When Design Kills: A Case for Safety in Tall Buildings

Terri Meyer Boake *Professor,* University of Waterloo

June 14, 2017 – Grenfell Tower, London

CT-T-T

Recent Tall Building Fires

- February 12, 2012.
- November 25, 2014.
- February 21, 2015.
- December 31, 2015.
- July 20, 2016.
- June 14, 2017.
- August 4, 2017.

Tamweel Tower, Dubai Lacosse Apartments, Melbourne The Torch, Dubai The Address, Dubai Sulafa Tower, Dubai Grenfell Tower, London The Torch, Dubai

Sulafa Tower, Dubai

Tamweel Tower, Dubai | February 12, 2012

- 34 storey tower, 160 apartments
- Residential, operable windows, balconies
- No deaths or injuries
- Fire started on the outside of the building
- Assumed a cigarette ignited some trash on a balcony and the fire swept up the exterior
- Clad in non fire rated aluminum panels with thermoplastic core
- Residents still not able to move back into the building until late 2017
- Seen as a test case in the UAE for fire related insurance claims and repairs
- In addition to replacing the cladding they will also be raising the height of the balconies

Lacosse Apartments, Melbourne | November 25, 2014

- 21 storey tower, 200 apartments
- Residential, operable windows, balconies
- No deaths or injuries
- Fire started on the outside of the building
- A cigarette ignited some trash on a balcony and the fire swept up the exterior
- Fire swept from 8th to 21st floor in 11 minutes
- Clad in non fire rated aluminum panels with thermoplastic core
- The cladding has never been replaced and the building remains occupied
- The Australian government is looking into a process to deal with the many existing buildings with similar cladding

The Torch, Dubai | February 21, 2015, August 4, 2016

- 86 storey tower
- Residential, operable windows, balconies
- 4 people with minor injuries
- Fire started on the outside of the building both times
- Clad in non fire rated aluminum panels with thermoplastic core
- Fire #1: Fire alarms did not sound, people notified by occupants of an adjacent tower
- Fire #2: Alarms did sound
- Repairs to the building have yet to be completed

The Address, Dubai | December 31, 2015

- 63 storey tower
- Residential/hotel, operable windows, balconies
- Minor injuries
- Fire started on the outside of the building from an electrical fault from a wire for exterior lighting, located on a ledge between the 14th and 15th floors
- Clad in non fire rated Alubond aluminum panels with low density polyethylene core
- Fire alarms did not sound and sprinklers did not go off
- Emaar to receive Dh1.22 billion insurance claim
- Hotel set to reopen late 2017 (unsure if it has)

Sulafa Tower, Dubai | July 20, 2016

- 75 storey tower
- Residential, operable windows, balconies
- No injuries
- Fire started on the outside of the building from a discarded cigarette butt on the 61st floor
- Clad in non fire rated aluminum panels with low density polyethylene core
- Fire alarms did not sound and sprinklers did not go off
- 3 hours to extinguish
- 15 floors damaged
- Flames fanned by high winds

https://www.thenational.ae/uae/sulafa-tower-residents-spend-night-in-dubai-hotel-following-1.167073

Grenfell Tower, London | June 14, 2017

Graphic does not include Victoria King, 71, and her daughter, Alexandra Atala, 40, who also died in the blaze, details of where they lived have not been released. Baby Logan Gomes, who was stillborn in hospital on 14 June after his parents escaped the tower block, has also been recorded by police as a victim of the fire. They include popeli visiting friends and family in the block.

- 27 storey tower
- Residential, operable windows (summer night, open), no balconies
- 71 deaths
- Fire started on the inside of the building from a malfunctioning fridge that burnt through to the cavity
- Spread from 4th floor upwards in 15 minutes
- Re-clad in non fire rated aluminum panels with low density polyethylene core using a rain screen with an additional 150mm polyisocyanurate insulation and a 50mm continuous cavity
- No fire alarms in building
- Single stairwell

London fire probe focuses on cladding

With 17 confirmed dead but dozens of people still missing, fire chiefs say no more survivors are expected to be found in London's 120-apartment Grenfell Tower

Grenfell Tower

"The cladding had a metal outer coating and an expanded foam interior. This polyethylene - or plastic - core is less fireproof than other alternatives.

However, even this type of cladding - when properly fitted and with its polyethylene insulation <u>expertly encapsulated</u> - should resist fire, the Fire Protection Association (FPA), the UK's national fire safety organisation, said." http://www.bbc.com/news/uk-40301289

The additional cavity insulation and air space make this fire very different from the UAE fires which did not use the product in this manner.

Grenfell Tower

- In a statement on its website, Omnis Exteriors said panels such as Reynobond PE should only be used with "a non-combustible insulation material such as mineral fibre" if they are to be installed on high-rise buildings.
- The fire resistant panel was dropped due to cost reasons
- Massive failures in communication
- Massive investigation underway, changes coming to the British codes.

Grenfell Tower

Grenfell physical issues

Typical residential floor in Grenfell Tower

- Only one exit stair for 300+ people
- No sprinkler system

Major Issues in Façade Design

- Deviation from traditional materials
- Out of date fire fighting practice and capabilities
- Variation in global codes, standards and fire test methods
- Confusing state of product naming / lack of clarity on websites and product info
- Role of insulation in *fueling a fire*
- Combustible versus *Flammable*
- Generation of *toxic gasses*
- Height restrictions on flammable/combustible construction
- Rainscreen: the role of the air space in the façade
- Adjacency of buildings (dense urban situations)
- Balconies and operable windows
- Who is responsible?

Deviation from traditional materials

http://www.dailymail.co.uk/news/article-4606078/Man-faulty-fridge-started-Grenfell-Tower-inferno.html

- Traditional cladding materials have typically been non combustible (brick, precast, stone, glass, curtain wall
- The exterior of the building did not tend to burn – the fire load was mostly internal
- High rise residential buildings are typically reinforced concrete
- Traditional insulation such as fiberglass and rockwool are non combustible
- New, lightweight materials behave very differently in fire situations, often contributing greatly to the fuel load
- Newer materials can melt, <u>accelerate a fire</u> and release toxic gasses

Out of date fire fighting practices and capabilities

- 99% of the world's ladder trucks can't reach above the 7th floor whereas MOST high rises are at-least 12 floors and above
- "Shelter in Place" has been successful in preventing deaths from smoke inhalation based on the ability to extinguish the fire in *non-combustible towers (structure AND cladding)*
- Fire fighters are not accustomed to the fire *situations* created by new façade materials
- Fires are burning from the outside to the inside so not triggering alarms quickly
- Fire fighting equipment (fire hose cabinets, etc) designed to put out interior fires little in place for exterior fires
- Fires burning in concealed tall cavities, initially protected from water by metal cladding
- Fire spread is accelerated by the new materials, many taking as little as 15 to 20 minutes (how long does the fire truck take to arrive?)

Variation in global codes, standards and fire test methods

7 Behaviour in relation to fire

7.1 When tested to BS 476-6 : 1989, ALUCOBOND panel achieved a fire propagation index (I) of 0 with sub-indices (i_1), (i_2) and (i_3) also of 0 and when tested to BS 476-7 : 1997, the product achieved a Class 1 surface spread of flame.

7.2 When tested in accordance with BS EN 13501-1 : 2007, the ALUCOBOND plus panel, with outer aluminium sheet coated with primer and a two-layered finish coat, when tested for reaction to fire, achieved a classification of B-s1, d0.

7.3 When tested in accordance with BS EN 13501-1 : 2007, the ALUCOBOND A2 panel when tested for reaction to fire, achieved a classification of A2-s1, d0.

7.4 The panels are capable of achieving Class O surface or a 'low risk' material in relation to the national Building Regulations.

7.5 These performances may not be achieved by all colours of the panel and the designations of a particular colour should be confirmed by:

England and Wales — test or assessment in accordance with Approved Document B, Appendix A, Clause 1 Scotland — test to conform with Regulation 9, Annex $2C^{(1)}$, Table, or Annex $2E^{(2)}$

Northern Ireland — test or assessment by a UKAS accredited laboratory or an independent consultant with appropriate experience.

(1) Technical Handbook (Domestic).

(2) Technical Handbook (Non-Domestic).

7.6 The fixing gasket is present in such small quantity as to have negligible effect on the overall fire performance of the cladding.

7.7 For resistance to fire, the performance of a wall incorporating the system can only be determined by tests from a suitably accredited laboratory and has not been assessed as part of this Certificate.

7.8 Cavity barriers should be incorporated behind the cladding, as required by the national Building Regulations, but should not block essential ventilation pathways. Particular attention should be paid to preventing the spread of fire from within a building breaching the cladding system through window and door openings.

• Architects work globally

- Standards are not global
- Most tests are done on products and not assemblies
- Missing "bits" are pretty important parts of the safety of the assembly
- Assemblies typically vary from building to building
- Design applications vary

Product Confusion

(3) 1650 mm width available on request.

Grenfell is said to have swapped out a more expensive zinc panel for a cheaper aluminum one, that coincidently also came with a flammable core (the zinc had a fire resistant insulation core)

- Most products go by the name AlucoXXXXX and a cryptic suffix (RE, PE, Plus, A2, etc. who knows what these mean?)
- More concerned with marketing the aesthetics: exterior finish, colors, colorfastness, sizes
- Insulation options are given but with little supporting information
- Many websites do not talk about fire resistance
- Many websites do not cite specific test methods for fire resistance
- Often impossible to tell from the outside of a panel what is on the inside for insulation

Product Confusion

Colors

- · 30 standard colors.
- Also available in custom colors with minimum quantity.

Applications

- Wall curtain
- Parapet and fascia
- Columns and canopies
- Advertising plates
- Interior walls
- Decorative fins

Standard Dimension

- 1220mm x 2440mm x 3mm
- 1220mm x 2440mm x 4mm

Available Aluminum Skin Thicknesses

- Polyester 3mm: 0.12, 0.15, 0.18, 0.21mm 4mm: 0.21, 0.30, 0.40, 0.50mm
- PVDF 3mm: 0.21mm 4mm: 0.21, 0.30, 0.40, 0.50mm
- Special Sizes
 - Max Width: 2000mm
 Max Length: 6m

Optimal Thickness

• 2mm, 5mm, 6mm

Finishes

- · Polyester, PVDF
- Polyester NANO, PVDF NANO

As of the writing of this, Alucobest Panels from China were still being marketed and their website had no information to speak of on fire resistance or limitations of use.

These panels are used in the Australian market as well.

Product Confusion

- Most products go by the name AluXXXXX and a cryptic suffix (RE, PE, Plus, A2, etc. who knows what these mean?)
- Alcopanel, Alumech (South Korea), Alucobond (Germany), Alpolic (Japan), Haida, Alucobest (China), Alucowork, Alubond, etc.
- More concerned with marketing the aesthetics: exterior finish, colors, colorfastness, sizes
- Insulation options are given but with little supporting information
- Many websites do not talk about fire resistance
- Many websites do not cite specific test methods for fire resistance
- Often impossible to tell from the outside of a panel what is on the inside for insulation

Aluminum composite wall panels insulation core varies from 3 to 6mm (1/8" to 1/4") SERIOUSLY WITH 6MM OF INSULATION IT'S NOT CONTRIBUTING MUCH TO THE R-VALUE....

Mineral Wool: most fire resistant, withstand up to 1800F **Fiberglass:** high heat tolerance but will melt below mineral wool temps

Polyurethane: high flame spread and smoke, melts **Spray foam:** is flammable so in many countries has a fire retardant additive (performance then varies by product) **Polystyrene:** 212° F (100° C), it begins to soften, to contract and finally to melt. Must be protected by min 1/2" (13mm) gypsum board. Produces dense smoke that will result in carbon monoxide, monostyrene, hydrogen bromide gases

Low Density Polyethylene Insulation (LDPE):

- The softening of the aluminum
 combined with the melting of the
 LDPE insulation led to the panels
 falling off of the building.
- Fire resistance tests for the panels assume that the panels are sealed so that the edge condition does not expose the interior LDPE core

http://www.eng-tips.com/viewthread.cfm?qid=426349

(Photo courtesy of ChiralJon via Flickr.)

Polyisocyanurate:

- possesses the highest level of inherent fire resistance due to its unique structure of strong isocyanurate chemical bonds. These bonds result in improved high temperature resistance (up to 390F, more than twice the temperature resistance of other building insulation foams) which in turn leads to enhanced fire resistance.
- does not melt or drip when exposed to flame but rather forms a **protective surface char**, its fire resistance is further enhanced, especially in terms of flame spread and flashover potential.
- According to the manufacturer, passes both the ANSI UL 1256 and FM 4450 fire tests *without a thermal barrier*.
- Does have issues with generation of toxic gas

AUE Façade Fires:

Aluminium composite panel Flammable core

http://coherence.com.au/curlew/2017/06/high-rise-apartment-fears-after-london-fire/

Grenfell Insulation:

Used an aluminum composite panel over 150mm of Celotex RS5000 insulation

"This new design created an air space between the insulation (Celotex RS5000 PIR thermal insulation) and the aluminum sandwich panel cladding (Arconic's Reynobond ACM - PE core). This air space provided a path for fire spread and a potential chimney effect. Section 715.4 of the 2015 IBC requires all voids in curtain walls to be properly fire-stopped at the floor line. The fire-stop at the floor line was not present as part of the Grenfell Tower cladding project. Building safety experts had warned of using combustible insulation in 2014."

https://www.buildingcci.com/blog/07-19-2017/grenfell-tower-fire

Combustible versus Flammable

According to the National Fire Protection Association (NFPA), Combustible substances are those with a flash point of 100 to 150 degrees Fahrenheit. Substances classified as Flammable have flash point temperatures between 20 and 100 degrees Fahrenheit. Thus from the standard/regulatory definitions, Flammable presents a greater fire hazard than Combustible.

February 2007 in Construction Week quoting Wulf Binder, a sales manager working for the aluminium group Novelis Deutschland. "A 5,000 square-metre facade clad with composite panels is equivalent to 19,000 litres of fuel," he said.

https://www.thenational.ae/business/property/most-fire-resistant-panels-still-being-ignored-for-uae-towers-despite-spate-of-blazes-1.207550

Combustible versus Flammable

	CLASS A	CLASS B	CLASS C	CLASS D	Electrical	CLASS F	
Type Extinguisher	Combustible materials (e.g. paper & wood)	Flammable liquids (e.g. paint & petrol)	Flammable gases (e.g. butane and methane)	Flammable metals (e.g. lithium & potassium)	Electrical equipment (e.g. computers & generators)	Deep fat fryers (e.g. chip pans)	Comments
Water		×	×	×	×	×	Do not use on liquid or electric fires
Foam	<		×	×	×	×	Not suited to domestic use
Dry Powder			\checkmark		\checkmark	×	Can be used safely up to 1000 volts
CO2	×		×	×	\checkmark	×	Safe on both high and low voltage
Wet Chemical	\checkmark	×	×	×	×	~	Use on extremely high temperatures

Generation of toxic gasses

Table 6 The yields of toxic products for the smouldering conditions

Material	Smouldering Yields mg/g								
	CO2	CO	HCN	NO ₂	HCI	HBr			
GW Fiberglass	7.594	1.753	0.392	0.885	0.471	ND			
SW Mineral glass	5.687	0.573	0.067	0.429	0.635	ND			
PhF Phenolic foam	35.743	11.063	0.232	0.685	ND	ND			
EPS Expanded Poly	ND	ND	0.003	ND	1.078	ND			
PUR Polyurethane	19.324	1.672	0.056	0.673	2.368	ND			
PIR Polyiso	25.390	2.171	0.083	0.328	2.277	ND			
ND – below the	limit of deteo	tion							

It was reported that many of the Grenfell residents may have died from cyanide gas poisoning.

Non combustible insulation such as fibreglass and mineral wool give off comparatively small amounts of toxic gasses as compared to the foams.

 $http://clok.uclan.ac.uk/1536/1/Stec\%20 and\%20 Hull_Fire_Toxicity_of_Insulation_Materials_EnergyBuildings_2011.pdf$

Height restrictions on flammable construction

Not global agreement on the height permitted for a combustible façade:

- 18 meters in the UK
- 15 meters in the UAE
- Not more than 6 storeys in Canada
- Some manufacturers cite 10m as the limit for use

The overall height determines the acceptability of façade materials on the entire building.

Key Questions:

- Is a fully engulfed building 10cm shorter than the above ok?
- How high does the fire truck ladder reach?
- What if they get different equipment?
- How much knowledge is an architect to have regarding available local fire equipment?
- Access to the various façades to fight the fire might be different over time.

Is it height a façade design problem?

Figure 12.3. Exterior curtain wall and floor fire exposure mechanisms. (Courtesy of Aon Fire Protection Engineering)

In the UAE there was a suggestion of implementing a non combustible fire break of up to 10m in width on high rise towers so that the fire could be prevented from engulfing the entire building.

https://www.buildsurv.com.au/news/2015/4/23/vertical-separation-of-openings-and-spandrel-construction-how-do-they-affect-your-design

The spandrel panel has been relied on to prevent the spread of fire between floors.

Operable windows make this challenging.

Spandrel panel failure in residential buildings

- Traditional precast concrete spandrel panel was non combustible so the separation of operable windows not a great problem for fire spread
- With a flaming exterior the spandrel panel provided no separation between the operable windows
- This would be a problem on low rise as well as high rise residential buildings.

http://www.eng-tips.com/viewthread.cfm?qid=426349

Rainscreen: the role of the air space in the façade

The odd shape of the Grenfell Tower columns meant that there was an airspace in front of and behind the Polyiso insulation layer, likely exacerbating the chimney effect.

- A rainscreen façade is a well established practice in Canada, and the need for firestopping to break the continuity of the channel is well known This applies to all types of façade cladding materials
- The vertical shafts created by the column covering in Grenfell led to the accelerated spread of the fire
- Essential to properly detail façades with cavity (rather than eliminate the cavity) as it is essential for air pressure equalization to prevent rain penetration
- Also block corners so fire or water is not pushed to adjacent façade cavities
- Cavity insulation should be of a non combustible type or if flammable, properly encapsulated
- Was not an issue in the UAE fires as no cavity there
- More education in detailing is needed

Adjacency of buildings

- Tall buildings follow very different setback requirements globally
- Setbacks often have been set based on the use of traditional non combustible cladding materials (stone, brick, precast, terra cotta, glass, aluminum)
- These tend not to burn and *waft* down aflame during a fire
- Wind exacerbates dispersion of debris
- Separating distances have responded to the effects of radiation temperatures on adjacent buildings
- Plastics have been known to be a problem for melting and combustion from adjacent property fires

Marina Bay, Dubai

Adjacency of buildings

The St. LAWRENCE BURNS

One of the dwelling house "burns" being filmed by the National Film Board.

Why has this knowledge somehow been completely forgotten as new materials have been developed? The St. Lawrence Burns of 1958 documented the reach of flames and heat from a range of house types (brick and clapboard) and resulted in the 1.2m (4 ft) setback used to allow 7% unprotected openings in residences in Canada.

Balconies and operable windows

http://www.eng-tips.com/viewthread.cfm?qid=426349

- All of these tower fires were *residential occupancies*
- The UAE and Melbourne projects all had balconies
- A cigarette fire on a balcony was mentioned as the instigator in many instances
- Most projects had operable windows which allowed in Grenfell the fire to immediately spread to the interior
- Operable windows and doors open to the corridor allow for rapid spread of fire
- In the Tamweel fire there is mention of a forthcoming increase in the balcony railing height as a fire prevention
- In theory the balcony should act as a fire break ledge, <u>unless itself clad in flammable</u> <u>materials</u>
- Balconies would also need to be continuous
 to act as a ledge break

Balconies and operable windows

- In the Tamweel fire there is mention of a forthcoming increase in the balcony railing height as a fire prevention
- In theory the balcony should act as a fire break ledge, <u>unless itself</u> <u>clad in flammable materials</u>
- <u>Balconies would also need to be continuous to act as a ledge break</u>

Major Problem – Existing Buildings

- There have been identified well over 1,000 towers in the UK, UAE and Melbourne alone that used the dangerous material.
- A study done after The Address fire cited that most buildings constructed in Dubai prior to 2012 used the cheaper more flammable cladding.
- Cost identified prior to The Address fire as the primary reason that there was simply no demand for the fire resistant panels (30% premium over the LDPE cores)
- Civil Defense in the UAE is taking a hard line on new construction with new codes and looking at existing projects.

Marina Bay, Dubai

Massive testing in the UK post Grenfell

- One of the issues with the current "witch hunt" that is underway in the UK is that it lacks rigor and transparency.
 - Tests are being conducted on the façade material, many failing, but there is no rigor in examine the cavity, air space and insulation behind – which exacerbated the Grenfell fire.

https://www.theguardian.com/uk-news/2017/jun/26/tower-block-cladding-tests-after-grenfell-fire-lack-transparency-say-experts#img-1

Some ACM Panel manufacturers cease production

≡ [X] BUSINESS

Sean Cronin

June 12, 2016

ted: lune 17, 2016 04-00 AM

conomy Banking Aviation Property Energy Technology Travel and Tourism Comment Markets Money

Alubond stops making plastic-filled cladding used in The Address Downtown Dubai

Alubond will no longer make the controversial panels containing cores known by the industry shorthand of LDPE.

- A number of manufacturers are ceasing production of their PE type products
- But not all
- Fire test procedures are still not uniform nor rigorous
- Cavity insulation specification and design detailing is still subject to failure
- Recladding is an ongoing issue
- Building design, operable windows and use of balconies for smoking remains an issue.

#neveragain

Torre del Moro Fire – August 2021

Italian prosecutors investigate 18 parties in connection with Milan cladding fire

Italian prosecutors have announced that 18 parties connected to the design, construction and management of a tower block which was involved in a devastating fire last August have been investigated for the crime of 'culpable disaster'.

The tower was clad in aluminium composite material (ACM) – the same material as used on Grenfell Tower.

A Fire Safety Europe comparative report of 19 countries written in October 2020 found Italy to have some of the most lax rules on the continent. It said the country has no requirement for sprinklers, and no mandatory requirements for external wall insulation or cladding systems.

Building completed in 2011.

Torre del More Fire

https://www.dezeen.com/2021/08/31/milan-apartment-block-fire-torre-del-moro-grenfell/

"When we arrived, the fire had a normal course, that is from the 15th floor upwards," a firefighter told Corriere della Sera.

"When the first team entered, the tower was immediately engulfed in flames and the fire went down unnaturally, as evidence that it found in the lining not only nonfireproof material but also fuel capable of extending the fire quickly."

Fortunately, no deaths.

Bronx Fire, Twin Parks Building – January 9, 2022

'It looks like a war zone': horror as Bronx apartment building went up in flames

Residents tell of anguish after fire broke out on Sunday morning, leaving 17 people dead and scores injured

The building on East 181st Street. Hundreds of firefighters responded to the alarm. Photograph: Justin Lane/EPA

Karen Dejesus, 54, was cooking breakfast for her young granddaughter and her son when she heard fire alarms on Sunday morning in the Bronx borough of New York.

Dejesus and her family have lived in the high rise apartment building for almost 19 years. Alarms in the building went off erroneously so often that residents on Sunday didn't register the sirens as real, she told the Guardian. The COMPLEXITY of the layout is being cited as partial reasons for the difficulty in evacuation.

Building had a scissor stair located centrally with dead end corridors.

Major issue was the propping open of doors leading to the stairs and corridors filling with smoke even though the fire was contained mostly in the unit.

And people didn't react to the fire alarms as they go off so frequently in error.

Building constructed 1972.

Scissor stair, 2 storey units, dead end corridors, confusion

On the third floor, for example, eight units were duplexes with lower levels on the second floor. But the building stairwells and elevators were accessible only through hallways on the third floor — the second floor did not have hallways.

3rd floor

Bronx Fire

Bronx Fire

Changsha Telecom Fire – September 2022

China Telecom investigates fire in Changsha building; no casualties reported

By Global Times Published: Sep 16, 2022 08:11 PM

f 🈏 💊

Photo: Screenshot of Weibo video

The large fire that engulfed a high-rise building belonging to China Telecom in Changsha, Central China's Hunan Province, has been put out. No casualties were reported, the group announced Friday on China's Twitter-like Sina Weibo.

https://www.globaltimes.cn/page/202209/1275416.shtml

Construction on the building was finished in 2000. It is the first building in Changsha whose height exceeded 200 meters, reaching 218 meters with 42 floors above ground and two floors underground, according to media reports.

Reports of falling A/C units during the fire.

Istanbul Tower Fire – 15 October 2022

The fire tore through the tower - the second blaze to hit that part of the Turkish capital in a week (

NEWS POLITICS FOOTBALL CELEBS TV MONEY ROYALS

Istanbul fire: Blaze at huge tower block as flames seen ripping through all floors

Videos of the terrifying blaze show how the fire has ripped through every floor of the tower block in Istanbul, Turkey, sending smoke billowing into the sky

By Kieren Williams, News Reporter 19:52, 15 Oct 2022 | UPDATED 23:00, 15 Oct 2022

A fire has torn through a huge tower block in **Turkey**, with terrifying footage emerging from the blaze showing smoke spreading across the country's capital.

Footage from the incident shows a terrifying scene where smoke billows into the night as the flames burn the height of the tower.

Of note is that the fire "tore up" the corner of the building as it spread.

This points to building design as contributing to the problem.

Unsure of date of construction.

https://www.mirror.co.uk/news/world-news/breaking-fire-breaks-out-huge-28247246

Cuba Street, London, UK

dezeen

Follow: 🕤 💟 🌘

52-storey Morris + Company tower delayed amid fire brigade concerns over single staircase

f 💙 🖗 🎯 🗓 t

Nat Barker | 14 January 2022 | 23 comments

A planning application for a 52-storey tower in London's Canary Wharf designed by Morris + Company has been delayed just hours before it was due to be determined amid fire brigade concerns over safety.

The 172-metre residential skyscraper on Cuba Street would only have one staircase under its current design.

Tower Hamlets Council's strategic development committee had been due to make a decision on the planning application for the 421-apartment building on Thursday evening, with officers having recommended its approval.

https://www.dezeen.com/2022/01/14/morris-company-cuba-street-staircase/

"In buildings with a single escape route, we would expect the developer to have their own fire engineers provide a full review to show the resilience in the event of a fire and this does not appear to have been carried out."

Design has been revised to include two stairs.

Cuba Street, London, UK

No information was available on the cladding system for the building.

Many fires have started on balconies.

Fire can skip through operable windows but nothing is easily gleaned regarding operability from the photos as all are depicted closed.

Building is sprinklered with a "stay put" advisory.

Finding fakes and mislabeled materials

Breakthrough spectrometer technology identifies 'safe' cladding

Hits: 2292

Military-grade spectrometer technology developed by government research agency the CSIRO and Sydney company DataDot Technology has been successfully trialled in a pilot program to accurately identify the origin of safe cladding on building façades. Counterfeit flammable cladding - said to be imported from China, with stickers attached falsely declaring it to be fire resistant - was found in Victoria just last month.

DataTraceID, originally developed to prevent and detect counterfeiting and prove product authenticity, contains a luminescent inorganic marker, which provides a light signature that can be read by DataDot's spectrometer.

The non-invasive technology is a currently used in the wide range of covert anti-counterfeit applications including casino chips, food and pharmaceutical products.

When Australia's BMF (Building Ministers' Forum) raised the issue of cladding identification, manufacturer Fairview Architectural asked its Innovations team to explore how best to incorporate a cutting edge 'failsafe' into panel labelling systems.

"They quickly contacted asset identification and authentication experts DataDot Technology," according to a press release. "In an applied test for the building sector, some DataTraceID 'marker' was added to the fluoropolymer paint on the aluminium-core cladding Vitracore G2 made by Fairview, the test proved 99% effective in spotting the 'safe' cladding's origin. A huge problem in Australia has been the mislabeling or knock off materials.

New technology has been developed to detect counterfeit materials.

How do we evaluate façade design for fire beyond materials?

Fig. 13.10 Exterior wall and floor fire exposure mechanisms from a fire starting within the building [197] (Courtesy of Arup)

148

1

13 Building Envelope/Enclosure

The Fire & Safety Committee at CTBUH has been debating façade issues for a number of years now.

There are still many "wicked problems" left to solve.

Façade design is complicated and the more innovative the building, the more difficult to assess for safety.

https://www.stefanoboeriarchitetti.net/project/bosco-verticale/

Fig. 13.12 Exterior wall and floor fire exposure mechanisms from a fire starting in the cavity of a facade system (Courtesy of Arup)

The Impact of Building Shape on Exterior Fire Spread

THE RELATIONSHIP BETWEEN BUILDING DESIGN AND FIRE SPREAD:

How the shape, form & features of a building can influence the behaviour of fire

By Frances Maria Peacock

Fire Engineer at Intelliclad

OVERALL SHAPE, GEOMETRIC FORM & ARCHITECTURAL FEATURES

Peacock is studying how the shape of the building aids in fire spread in unexpected ways.

What is being done?

Fire Safety for Very Tall Buildings

The Society of Fire Protection Engineers Series

Engineering Guide

Second Edition

🖄 Springer

4 Bookmarks 8=-1 🕼 🥵 Chapter 1: Introduction ■ Chapter 2: History ■ Chapter 3: Components of Performance-Based Design ■ Chapter 4: International Practices ■ Chapter 5: Unique Features of Very Tall Buildinas ■ IP Chapter 6: Special Features and Attractions ■ Chapter 7: Hazard, Risk, and Decision Analysis in Very Tall Building Design ■ Chapter 8: Integration of Building Design and Systems Chapter 9: System Reliability ■ Chapter 10: Situation Awareness ■ Chapter 11: Emergency Egress ■ Chapter 13: Building Envelope/Enclosure ■ Chapter 14: Suppression ■ Chapter 15: Detection and Alarm ■ Chapter 16: Smoke Control ■ Chapter 17: First Responder Considerations ■ Chapter 19: Buildings Under Construction ■ Chapter 20: Building Life Cycle Management ■ Chapter 22: Existing Building Considerations Chapter 23: Inspection, Testing, and Maintenance ■ Chapter 24: Aerial Vehicle Platforms ■ I Chapter 25: ESS in Very Tall Buildings

References

2022 update of comprehensive book.

What is being done?

Project Remediate

Cladding Replacement Pattern Book

NSW

Comprehensive manual on protocols for replacing flammable cladding on existing residential buildings.

Tall Excellence

Seeking the Ideal in Vertical Urbanism

Thank you.