
R-value and Heat Loss

What is the R-value?

- R-value is an assessment of resistance to heat flow through a wall; *ie. it is a measure of the wall or material's ability to RESIST heat movement*
- speaks about insulation merit of the wall/material
- The higher the r-value, the better the material
- expressed as m² * °C/W
- heat flow is driven by temperature difference from the interior to the exterior (higher the difference, more tendency for heat to move)
- also a function of the area (m²) of the building envelope more envelope, more area for heat to escape through
- opaque building elements are usually expressed in terms of their R-value

What is the U-value?

- U-value is the rate of heat flow through a wall conductance
- it is a measure of the wall or material's ability to PROMOTE heat flow.
- The lower the U-value, the better the material
- expressed as W/ m² * ^oC
- heat flow is driven by temperature difference from the interior to the exterior (higher the difference, more tendency for heat to move)
- also a function of the area (m²) of the building envelope more envelope, more area for heat to escape through
- glazing materials usually speak in terms of U-values

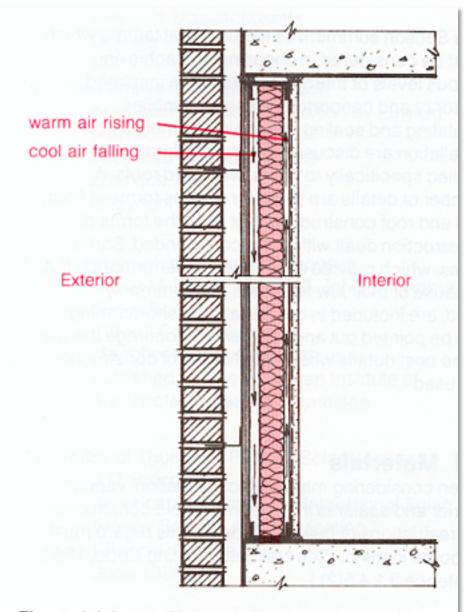


Figure 4.1 Loose Fitting Insulation Resulting in Convection Currents

Insulation materials need to be tightly packed in the wall to prevent airflow within the cavity. This kind of convection/air movement can decrease the insulation merit of the wall, in spite of the actual r-value that might "appear" to be accurate.

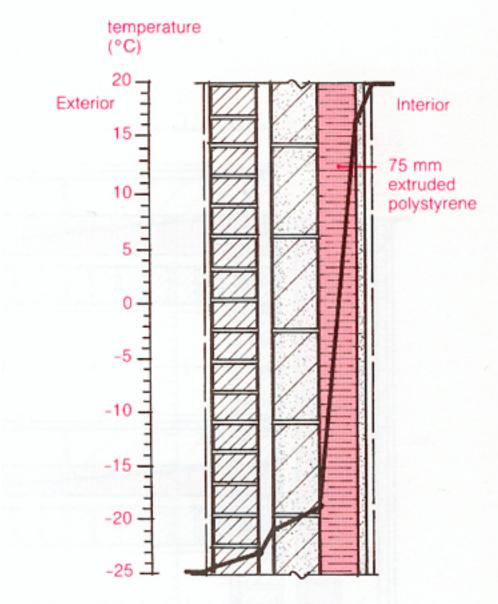


Figure 2.6 Insulation Placed on Interior

This image shows the temperature profile of a wall. The amount of insulating capability of each material will affect the temperature. Highly insulative materials make the greatest contribution to the resistance to heat flow.

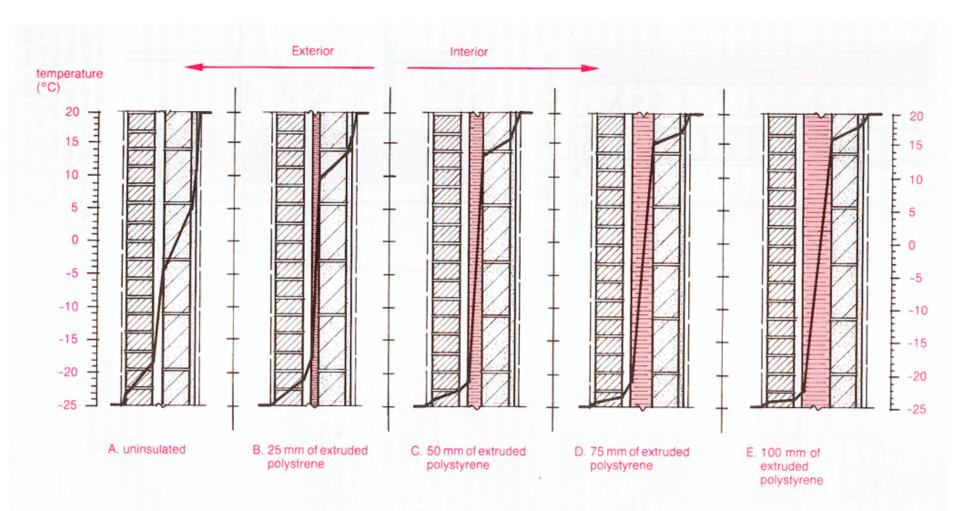
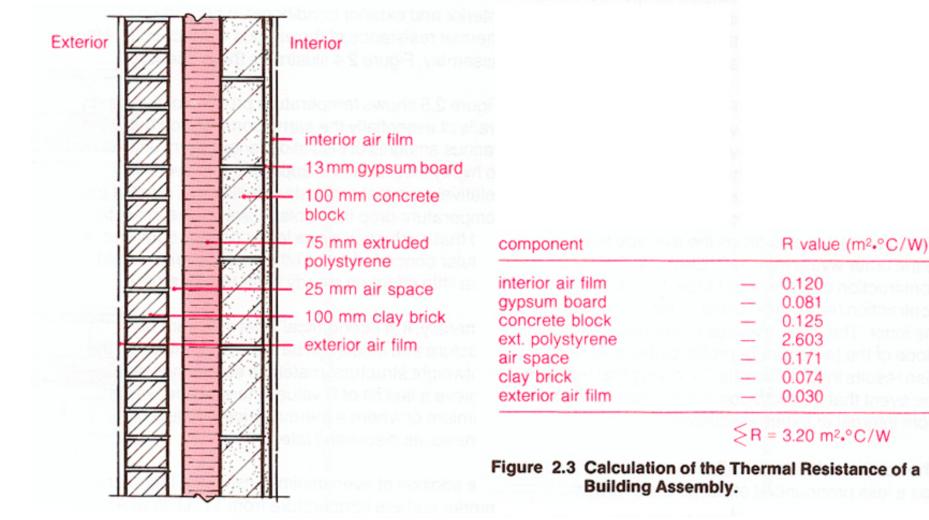
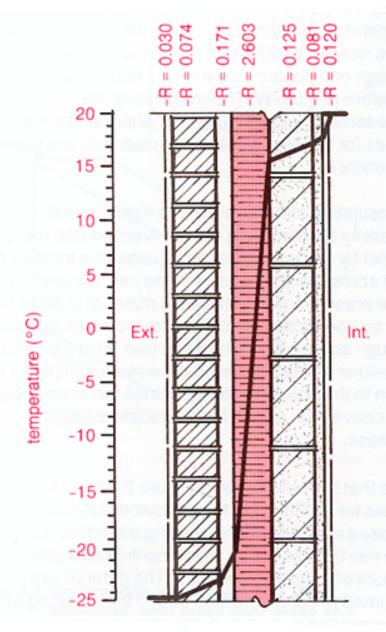




Figure 2.5 Temperature Profiles on a Typical Cold Winter Day for Five Cavity Walls with Various Amounts of Insulation.

The R-value for a wall is the sum of all of the R-values for all of the individual components PLUS values for inside/outside air films and air spaces.

This diagram shows the calculation of the temperature profile across the assembly. Changes are calculated as a proportion of the overall temperature difference from interior to exterior.

So what you need to calculate here is the amount of temperature drop across the envelope that each material is responsible for!

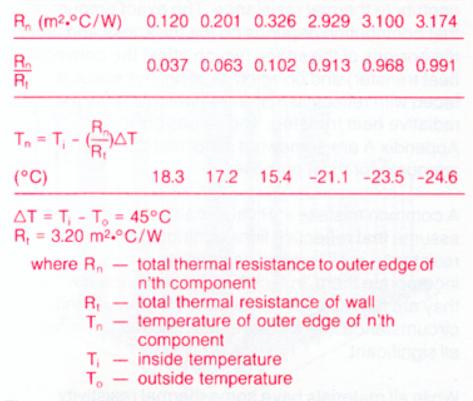


Figure 2.4 Calculation of Temperature Profile in a Building Assembly

APPENDIX E DEGREE-DAY VALUES FOR VARIOUS LOCATIONS

Degree

days

below

18°C

6189

4 082

3 590

4623

4 600

5776

5 5 1 0

4740

4 580

4740

5 280 4 471

5 080

5 400

4630

5 060

6135

5 1 1 0

5 242

5 3 5 0

5 0 7 0

6146

4 5 2 0

5 542

5 400

6 0 5 0

6 562

5 920

6 077

5 482

6239

8 274

6 879

Design temperatures

1%

°C

-30

-36

-20

-18

-22

-22

-33

-32

-28

-27

-28

-29

-26

-28

-27

-26

-27

-32

-30

-28

-28

-36

-25

-34

-34

-36

-41

-36

-37

-34

-37

-51

-43

2 1/2%

°C

-28

-34

-18

-16

-20

-20

-31

-30

-25

-25

-25

-27

-23

-25

-25

-24

-25

-30

-26

-28

-26

-25

-33

-23

-32

-32

-34

-37

-34

-35

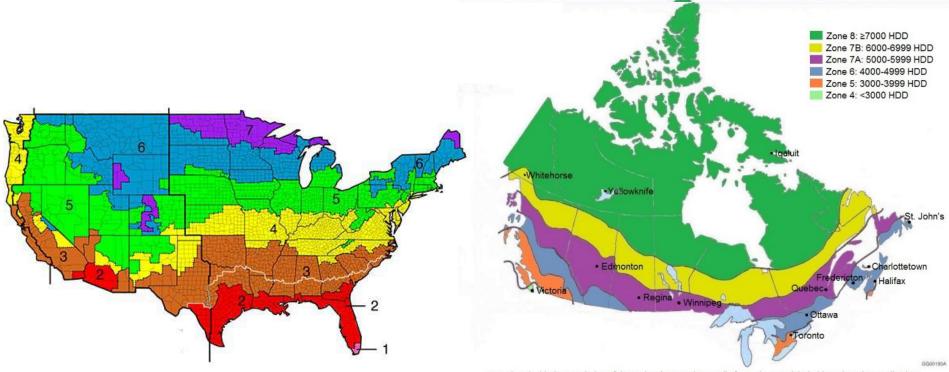
-32

-34

-50

-41

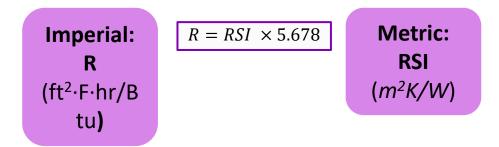
WEATHER DATA AND JANUARY DESIGN TEMPERA-TURES FOR 100 CANADIAN COMMUNITIES


	Degree	Design ten	peratures	
Province and Station ¹	days below 18°C	2 1/2% °C	1% ℃	Province and Station
Newfoundland				Sudbury
Corner Brook	4 900	-19	-22	Timmins
Gander	5 039	-18	-21	Toronto
Goose Bay	6 522	-31	-33	Windsor
St. John's	4 804	-14	-16	Prince Edward Island
Stephenville	4 783	-17	-20	Charlottetown
Northwest Territori	ies			Summerside
Fort Smith	7 852	-43	-45	Québec
Frobisher Bay	9 845	-40	-42	Bagotville
Inuvik	10 174	-46	-48	Chicoutimi
Resolute	12 549	-44	-45	Drummondville
Yellowknife	8 593	-43	-45	Granby
Nova Scotia				Hull
Amherst	4 580	-21	-24	Mégantic
Halifax	4 123	-16	-18	Montréal
Kentville	4 240	-18	-20	Québec
New Glasgow	4 580	-21	-23	Rimouski
Sydney	4 459	-16	-18	St. Jean
Truro	4 704	-21	-23	St. Jérôme
Yarmouth	4 024	-13	-15	Sept Iles
Ontario				Shawinigan
Belleville	4 190	-22	-24	Sherbrooke
Chatham	3 530	-16	-18	Thetford Mines
Cornwall	4 470	-23	-25	Trois Rivières
Hamilton	3 710	-17	-19	Val d'Or
Kapuskasing	6 366	-33	-35	Valleyfield
Kenora	5 932	-33	-36	Saskatchewan
Kingston	4 266	-22	-24	Estevan
Kitchener	4 110	-19	-21	Moose Jaw
London	4 068	-18	-20	North Battleford
North Bay	5 318	-28	-30	Prince Albert
Dshawa	4 130	-19	-21	Regina
Ottawa	4 673	-25	-27	Saskatoon
Owen Sound	4 220	-19	-21	Swift Current
Peterborough	4 520	-23	-25	Yorkton
St. Catharines	3 550	-16	-18	Yukon Territory
Samia	3 840	-16	-18	Dawson
Sault Ste. Marie	5 180	-25	-28	Whitehorse

Temperature observations at airports and/or local weather offices were used to develop design data.

For additional data refer to The Supplement to the National building Code of Canada 1980.

Wall design and mandatory R-values for assemblies are determined based on the severity of local climates, expressed in degreedays. The more severe the climate, the more insulating value required by the code.


*Canadian Climate Zones	Heating degree-days
Zone 4	< 3000 HDD
Zone 5	3000 – 3999 HDD
Zone 6	4000 – 4999 HDD
Zone 7A	5000 – 5999 HDD
Zone 7B	6000 – 6999 HDD
Zone 8	≥ 7000 HDD

Reproduced with the permission of the National Research Council of Canada, copyright holder. The colour coding has been added by NAIMA Canada.

Finding R and U Values

- Textbooks
- Reference document (Building Enclosure Fundamentals)
- ASHRAE Handbooks
- Simulation Software
- Manufacturer

THERM

Insulation – nominal values look-up

Above-ground requirements

	Heating-degree day (HDD) of building location, °C days							
Den an De Stree Assessible	Zone 4	Zone 5	Zone 6	Zone 7a	Zone 7b	Zone 8		
Opaque Building Assembly	<3000	3000 to 3999	4000 to 4999	5000 to 5999	6000 to 6999	≥7000		
	Effective thermal resistance (RSI) in m ² °C/W							
Walls (No HRV)	2.78	3.08	3.08	3.08	3.85	3.85		
Walls (HRV)	2.78	2.97	2.97	2.97	3.08	3.08		

Appendix – lookup tables

	Thermal Resistance of Insulated Assembly			Minimum Effective Thermal Resistance Required by Article 9.36.2.6. for Above-ground Wall Assemblies, (m ² ·K)/W				
Description of Framing or Material			Effective, (m ² ·K)/W	2.78	2.97	3.08	3.85	
Insulation in Framing Cavity		Continuous Materials	Entire Assembly	Minimum Nominal Thermal Resistance, ⁽¹⁾ in (m ² -K)/W, to be Made up by Insulation, Sheathing ⁽²⁾ or Other Materials and Air Film Coefficients				
	0.01/0/0/7	None	2.36	0.42(4)	0.61	0.72	1.49	
38 x 140 mm	3.34 (R19) ⁽³⁾	1.32 (R7.5)	3.68	_	-	_	0.17	
wood at 406	2.07 (000)	None	2.55	0.23	0.42	0.54	1.30	
mm o.c. 3.87 (R22)	0.88 (R5)	3.43	—	-	-	0.42		
	4.23 (R24)	None	2.66	0.12	0.30	0.42	1.18	

Canadian Codes Centre – Building Envelope

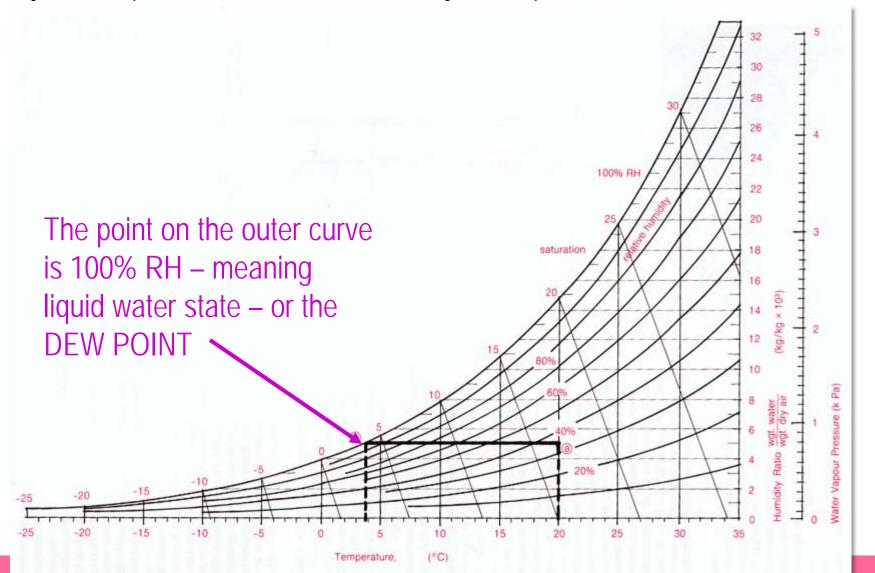
Insulation – windows, doors and skylights

· U-value - requirements for windows, doors and skylights

	Zone 4	Zone 5	Zone 6	Zone 7a	Zone 7b	Zone 8
	<3000	3000 to	4000 to	5000 to	6000 to	≥7000
Component		3999	4999	5999	6999	
	N	laximum Overal	I Thermal Trans	mittance (US	sl) in W/m² °C	
Doors and windows	1.8	1.8	1.6	1.6	1.4	1.4
Skylights	2.9	2.9	2.7	2.7	2.4	2.4

Energy Rating (ER) – requirements for windows and doors

	Zone 4	Zone 5	Zone 6	Zone 7a	Zone 7b	Zone 8
	<3000	3000 to	4000 to	5000 to	6000 to	≥7000
Component		3999	4999	5999	6999	
		Ν	/inimum Ener	gy Rating		
Doors and windows	21	21	25	25	29	29


Exceptions

- Storm doors
- One front door and attic/crawl space hatches
- Glass block up to 1.85 m²
- Garage door

(exempt) Umax= 2.6 W/M²k Umax= 2.9 W/M²k RSI = 1.1 m²K/W

The psychrometric chart can be used to determine the dewpoint as a function of the indoor dry bulb temperature and the relative humidity of the space.

Q. Where do we find the RSI values for our wall sections??

A. Scroll down to 5.2 Thermal Resistance of Continuous Materials

https://www.nrcan.gc.ca/energy/efficiency/housing/newhomes/energy-starr-new-homes-standard/tables-calculatingeffective-thermal-resistance-opaque-assemblies/14176#a5

The NRCan table is your first priority for accurate information. If you cannot find the material there, please use the following charts. If there is a disagreement between the following charts and the NRCan site, use the NRCan values.

R to RSI Converter: <u>https://isolofoam.com/en/r-rsi-converter/</u>

	The mal Resistance*				
Description	Per Unit of Thickness** RSI R	For Thickness Listed RSI R			
Insulation					
Mineral Wool and Glass Fibre Cellulose Fibre Vermiculite Wood Fibre Wood Shavings Sprayed Asbestos Expanded Polystyrene Complying with CGSB 41-GP-14a (1972) — TYPE 1 — TYPE 2 — TYPE 2 — TYPE 3 — TYPE 4 Rigid Glass Fibre Roof Insulation Natural Cork Rigid Urethane or Isocyanurate Board	0.0208 (3.00) 0.0253 (3.65) 0.0144 (2.08) 0.0231 (3.33) 0.0169 (2.44) 0.0201 (2.90) 0.0257 (3.70) 0.0277 (4.00) 0.0278 (4.30) 0.0347 (5.00) 0.0327 (4.00) 0.0327 (3.70) 0.0420 (6.00)	Multiply the thickness listed by the thickness of your element			
Mineral Aggregate Board Compressed Straw Board Fibreboard	0.0182 (2.63) 0.0139 (2.00) 0.0194 (2.80)				
Phenolic Thermal Insulation	0.0304 (4.34)				
Structural Materials					
Cedar Logs and Lumber Other Softwood Logs and Lumber Concrete:	0.0092 (1.33) 0.0087 (1.25)				
 — 2400 kg/m³ (150 lb/cu.ft.) — 1760 kg/m³ (110 lb/cu.ft.) — 480 kg/m³ (30 lb/cu.ft.) 	0.00045(0.065) 0.0013 (0.19) 0.0069 (1.00)				
Concrete Block — 3 Oval Core					
Sand and Gravel Aggregate — 100 mm (4 ⁻⁷) — 200 mm (8 ⁻⁷) — 300 mm (12 [*])		0.125 (0.71) 0.195 (1.11) 0.225 (1.28)			
Cinder Aggregate — 100 mm (4") — 200 mm (8") — 300 mm (12")		0.125 (0.71) 0.195 (1.11) 0.225 (1.28)			
Lightweight Aggregate 		0.264 (1.50) 0.352 (2.00) 0.400 (2.27)			

THERMAL RESISTANCE VALUES OF VARIOUS BUILDING MATERIALS

THERMAL RESISTANCE VALUES OF VARIOUS BUILDING MATERIALS

	Thermal Resistance*				
	Per Unit	For Thickness			
	of Thickness**	Listed			
Description	RSI R	RSI R			
Sheathing Materials					
Softwood Plywood	0.0087 (1.25)				
Mat-Formed Particle Board	0.0087 (1.25)				
Insulating Fibreboard Sheathing	0.0165 (2.38)				
Gypsum Sheathing	0.0062 (0.90)				
Sheathing Paper		0.011 (0.06)			
Asphalt Coated Kraft Paper					
Vapour Barrier		Negligible			
Polyethylene Vapour Barrier		Negligible			
Cladding Materials					
Fibreboard Siding	0.0107 (1.54)				
Softwood Siding					
Drop — 18 × 184 mm (1" × 8")		0.139 (0.79)			
Bevel — 12 × 184 mm					
$(1/2^{*} \times 8^{*})$ — Lapped		0.143 (0.81)			
Bevel — 19 × 235 mm					
(3/4" × 10") — Lapped		0.185 (1.05)			
Plywood — 9 mm (3/8") — Lapped		0.103 (0.59)			
Brick					
Clay or Shale — 100 mm (4")		0.074 (0.42)			
Concrete and Sand/Lime - 100 mm (4")		0.053 (0.30)			
Stucco	0.0014 (0.20)				
Metal Siding					
Horizontal Clapboard Profile		0.123 (0.70)			
Horizontal Clapboard Profile					
with Backing		0.246 (1.40)			
Vertical V-Groove Profile		0.123 (0.70)			
Vertical Board and Batten					
Profile		Negligible			
Roofing Materials					
Asphalt Roll Roofing		0.026 (0.15)			
Asphalt Shingles		0.078 (0.44)			
Built-Up Roofing		0.058 (0.33)			
Wood Shingles		0.165 (0.94)			
Crushed Stone — Not Dried	0.0006 (0.08)				

* Values are given in m^z. °C/W followed by values in ft^z. hr. °F/B.T.U. in parentheses.

" Metric values are given per mm of thickness. Imperial values are given per inch of thickness.

* Values are given in m^{2, o}C/W followed by values in ft². hr. ^oF/B.T.U. in parentheses.

** Metric values are given per mm of thickness. Imperial values are given per inch of thickness.

		Thermal Re	sistance*		
	Per Unit of Thickness**		For Th Listed	For Thickness Listed	
Description	RSI	R	RSI	R	
Air Surface Films					
Still Air-Horizontal Surface — Heat Flow Up — e.g. inside of ceilings			0.105	(0.61)	
Still Air-Horizontal Surface — Heat Flow Down — e.g. inside of floors			0.162	(0.92)	
Still Air-Vertical Surface — Heat					

How Down — e.g. inside of floors	0.162 (0.92)
Still Air-Vertical Surface — Heat Flow Horizontal — e.g. inside of walls	0.120 (0.68) ~
Moving Air — Any Position — e.g. outside of any surface	0.030 (0.17)
Air Spaces — Faced with Non-reflective Materials — 12 mm (1/2") Minimum Dimension	
Horizontal Space — Heat Flow Up	0.150 (0.85)
Horizontal Space — Heat Flow Down	0.180 (1.02)
Vertical Space — Heat Flow Horizontal	0.171 (0.97)
Air Spaces Less than 12 mm (1/2") in Minimum Dimension	0
Air Spaces — Faced with Reflective Materials*** — 12 mm (1/2") Minimum Dimension	
Horizontal Space-Faced 1 Side Heat Flow Up	0.324 (1.84)
Horizontal Space-Faced 2 Side — Heat Flow Up	0.332 (1.89)
Horizontal Space-Faced 1 Side — Heat Flow Down	0.980 (5.56)
Horizontal Space-Faced 2 Side — Heat Flow Down	1.034 (5.87)
Venical Space-Faced 1 Side — Heat Flow Horizontal	0.465 (2.64)
Vertical Space-Faced 2 Side — Heat Flow Horizontal	0.480 (2.73)
Air Spaces Less than 12 mm (1/2") in Minimum Dimension	0

* Values are given in m^{e.}*C/W followed by values in ft^e. hr. *F/B.T.U. in parentheses.

** Metric values are given per mm of thickness. Imperial values are given per inch of thickness.

*** These values may not be used in calculations for areas where the mean annual total degree days exceed 4400 Celsius degree days (8000 Fahrenheit degree days).

The interior and exterior air film (based on the texture of the surface, combined with speed of air flow over) contribute to the overall R-value of the wall. For a piece of single glazing, the contribution is very high!

When selecting values for air spaces, be careful to note the direction of heat flow, up or across the envelope.

THERMAL RESISTANCE VALUES OF VARIOUS BUILDING MATERIALS

	Thermal Resistance*				
Description	Per Unit of Thickness** RSI R		r Thickness ted R		
Interior Finish Materials					
Gypsum Board, Gypsum Lath	0.0062 (0.90)				
Gypsum Plaster - Sand Aggregate	0.0014 (0.20)				
Gypsum Plaster - Lightweight					
Aggregate	0.0044 (0.64)				
Plywood	0.0087 (1.25)				
Hard-Pressed Fibreboard	0.0050 (0.72)				
Insulating Fibreboard	0.0165 (2.38)				
Mat-Formed Particleboard	0.0087 (1.25)				
Carpet Fibrous Underlay		0.3	66 (2.08)		
Carpet Rubber Underlay		0.2	26 (1.28)		
Resilient Floor Coverings		0.0	14 (0.08)		
Terrazzo — 25 mm (1")		0.0	14 (0.08)		
Hardwood Flooring — 9.5 mm (3/8")		0.0	60 (0.34)		
— 19 mm (3/4")		0.1	20 (0.68)		
Wood Fibre Tiles — 13 mm (1/2")		0.2	09 (1.19)		

=

* Values are given in m2-°C/W followed by values in ft?, hr. °F/B.T.U. in parentheses.

** Metric values are given per mm of thickness. Imperial values are given per inch of thickness.